COSC 101, Final Exam
Spring 2019

Honor Code

I agree to comply with the spirit and the rule of the Colgate University Academic Honor Code
during this exam and throughout the final exam period. I will not discuss the contents of this exam
with other students until the exam period is over, and affirm that I have neither given or received
inappropriate aid on this exam.

Signature:

Printed Name:

Write your name; do not open the exam until instructed to do so.

You have 120 minutes to complete this exam.

There are 7 questions and a total of 90 points available for this exam. Don’t spend too much time
on any one question.

Since indentation is important in Python, please be sure that your use of indentation is obvious for
any code you write.

If you want partial credit, show as much of your work and thought process as possible.

If you run out of space for answering a question, you can continue your answer on one of the
scrap pages at the end of the exam. If you do so, be sure to indicate this in two places: (1) below
the question, indicate which scrap page contains your answer, and (2) on the scrap page, indicate
which question you are answering.

Question: 1 2 3 4 5 6 7 Total
Points: 5 10 15 15 10 15 20 90
Score:

COSC 101 Final Exam

1. (5 points) Assume that the following statements have already been executed:

p =28
q= 6.7
r = 4

May 2019

For each of the following expressions, evaluate the expression and write the resulting value,

or identify the error in the code that would prevent it from running.

@p/r

Solution:

2.0

(b) min(round(q), p)

Solution:

7

(c) str(p) * int(q // r)

Solution:

’8’

(d) int(q@) % p

Solution:

6

(e) int(q) // (» - 2 *)

Solution:

Error: integer division by zero

COSC 101 Final Exam May 2019

2. (10 points) Assume that the following statements have already been executed:

a ’Spring2019°’
b =1[a[l1], a[-3:]1, a[-2], a.split(’i’)]
c=9{az:4, ’a” : 3, b :5, ’d’: 2, 'e’: -2}

For each of the following expressions, evaluate the expression and write the resulting value,
or identify the error in the code that would prevent it from running.

(a) c[al

Solution:

4

(b) (’Spr’ in b) == False

Solution:

True

(c) a[-20::-2]

Solution:

(d) c.get(’Spring2019’,2)

Solution:

4

(e) 4 in c.values(Q)

Solution:

True

() ’Spring2019°[-7::-1]

Solution:

"irpS’

(g) "*’.join(b[:2])

COSC 101 Final Exam May 2019

Solution:

'p*019’

(h) bl c[al c[’e’1 1 1 - c[b[1]1[0]]]

Solution:

Error

(1) b[-11[11[2:]

Solution:
2019

(G) sum(c.values(Q))

Solution:
12

COSC 101 Final Exam

3. (a) (5 points) What is the output of the following program?
def g(lst):
if len(lst) < 2:

return []
else:

if 1st[0]==1len(lst):
return [1lst[0] * 2] + g(lst[2:])

print(g([5, 4, 3, 2, 11))

May 2019

Solution:

[10, 6]

(b) (5 points) What is printed by running the code?

def func(dictIn, s):
print(d,s)
for chr in s:
dictIn[chr]=chr
s=s+’1’
return dictIn,s

s="ab’

d={’a’:1, s:2}
print (func(d, s))
print(d,s)

Solution:

{’a’: 1, ’ab’: 2} ab

({’a’: ’a’, ’ab’: 2, 'b’: ’b’}, ’abll’)
{’a’: ’a’, ’ab’: 2, ’b’: b’} ab

COSC 101 Final Exam

(¢) (5 points) What is printed by the following program?

def a(lst):
strt = []
for i in range(len(lst)):
if [i] == lst[i:i+1]:

strt += [i]
return strt

print(a([2, 1, 0, 3, 0]))

May 2019

Solution:

(1, 3]

COSC 101 Final Exam May 2019

4. (15 points total) This question has three parts based on the following function.

def myFunction(s):
n = "" #empty string
for ch in s.lower():
if ch not in ’aeiou’:
n += ch
return n

(a) (5 points) What does myFunction(’All students’) return?

Solution: ’11 stdnts’

(b) (5 points) Rewrite myFunction(s) using a while loop instead of a for loop.

Solution:

def myFunction_while(s):
n = "" #empty string
i=20
while i < len(s):
if s[i].lower() not in ’aeiou’:
n += s[i]
i+=1
return n

(c) (5 points) Rewrite myFunction(s) recursively, using no loops.

Solution:

def myFunction_recursive(s):

if len(s) ==
return ""
r = v(s[1l:])

if s[0].lower() not in ’aeiou’:
r = s[0] + r
return r

COSC 101 Final Exam May 2019

5. (10 points total) This question has two parts.

(a) (5 points) Write a function removerepetitions that receives a list which may contain
repeated items and removes the repeated items (keeps only one instance of each item)
and returns None. You must use nested for loop.

Example:

myList=[1,2,1,3,2,2]

removerepetitions (myList)

print (myList) # has to print [1,2,3]

def removerepetitions (lst):
#your code here

Solution:

def removerepetitions(lst):
copy = lst[:]
for temp in copy:
for i in range(lst.count(temp) - 1):
lst.remove(temp)

COSC 101 Final Exam May 2019

(b) (5 points) Write the same function in a different way. This time the function has to re-
turn a new list instead of updating the same list. You must not use nested for loop.
Instead, write an auxiliary function removeItem(item, 1lst) that removes all repeti-
tions of a given item is a given list (keeps one instance) and use it in your function
removerepetitions(lst).

Example:

myList = [1,2,1,3,2,2]

print (removerepetitions(myList)) # has to print [1,2,3]

print (myList) # has to print [1,2,1,3,2,2]

Solution:

def removeItem(item, 1st):
for i in range(lst.count(item) - 1):
Ist.remove(item)

def removerepetitions(lst):
copy = lst[:]
for temp in lst:
removeltem (temp, copy)
return copy

COSC 101 Final Exam May 2019

6. (15 points) Write a function rearrange() that receives a dictionary parameter rawdict (ex-
ample below).
rawdict ={(’Nike’, ’Puma’): ’Sport’, (’Burger King’,):’Food’,
(1, 1.2, 5):’Num’, (’Adidas’,):’Sport’}

The function should use the information in rawdict to create and return a new dictionary labels

(example below).

labels ={’Sport’:[’Nike’,’Puma’,’Adidas’], ’'Food’:[’Burger King’],
"Num’:[1,1.2,5]%}

In rawdict, keys are tuples and values are strings describe the items in the tuple. In labels,
keys are the label values from rawdict and values are the list of all items which are associated
with that label.

After this, write a function summarize () which receives a dictionary parameter in the format
returned by rearrange(). The function should return create and return another dictionary
summary (example below).
summary = {’Sport’: [(’Nike’, 1), (’Puma’, 1), (’Adidas’, 1)1,

"Food’: [(’Burger King’, 1)], ’'Num’: [(1, 1), (1.2, 1), (5, DI}

In this dictionary, the keys are the labels and the values are lists of tuples with item names and
counts of times each item appeared with the corresponding label.

You should write at least one helper function to keep the amount of code in summarize () short
and modular.

Solution:

def rearrange(rawdict):
labels = {}
for key, value in rawdict.items():
if value in labels:
labels[value] += list(key)
else:
labels[value] = list(key)
return labels

def countrepeated(lst):

visited = []

result = []

for i in 1st:

if i not in visited:

result.append((i, 1st.count(i)))
visited.append (i)

return result

10

COSC 101

Final Exam

May 2019

def

summarize (labels):

result = {}

for key, val in 1labels.items():
result[key] = countrepeated(val)

return result

11

COSC 101 Final Exam May 2019

7. (20 points total) This question has two parts and is continued on the following pages.

Consider a weather data file in which each line of the file is either the name of a location
(in the format "#City, STATE"), temperature information for the above city (in the format
"Month day, low, high"), or a blank line. For example, a short weather data file weather.txt

contains the following:

Hamilton, NY

December 4, 27, 48
December 5, 41, 52
December 6, 33, 39

Williamstown, MA
December 4, 24, 28
December 5, 42, 55

December 6, 26, 55
Chicago, IL

December 4, 44, 65
December 5, 27, 44
December 6, 26, 35

According to this file, the high temperature in Williamstown on December 6th was 55 and the
low in Chicago on December 5th was 27.

Your program will be written as multiple functions, described on the following pages.

12

COSC 101 Final Exam May 2019

(a) (10 points) Write a function get_temps that takes as a parameter the name of a weather

data file. This function will return a dictionary where the keys are locations and the values
are lists containing all of the temperatures from that location. For example:

>>> print(get temps (’weather.txt’))
{’Hamilton , NY’ : [27, 48, 41, 52, 33, 39],
"Williamstown , MA’ : [24, 28, 42, 55, 26, 55],
’Chicago , IL’: [44, 65, 27, 44, 26, 35]}

Your function should return an empty dictionary if the file is not found. (Hint: Python
raises a FileNotFound error if it is unable to open a file.) You can assume that opened files
will be in the format described on the previous page.

Solution:

def get_temps(filename):
try:
d = {}
f = open(filename, ’r’)
for line in f£:

if line.startswith("#"):
k = line.strip("# ")
dfk] = []

elif line:
low = int(line.split(’,’)[-2].strip())
high = int(line.split(’,’)[-1].strip())
d[k].append(low)
d[k].appendChigh)

f.close()
return d

except FileNotFoundError:
return {}

13

COSC 101 Final Exam May 2019

(b) (10 points) Write a function temp_report that takes as a parameter the name of a weather
data file. This function will return a string ‘report’ describing the data from the file. For
example:

>>> temp report(’weather.txt’))

O0f the 3 locations: Chicago, IL was the warmest with a high
temperature of 65 and Williamstown, MA was the coldest

with a low temperature of 24.

You are required to use the get_temps function from part (a). You can assume the function
works as described (regardless of whether your answer is correct or not). You must also
write at least one additional helper function to use in your temp_report.

Solution:

def get_highlow(temps):
high, low = temps[0], temps[0]
for t in temps:
if t > high:
high = t
if t < low:
low = t
return high, low

def temp_report(filename):
all_temps = get_temps(filename)

accumulators

best_high_loc = all_temps.keys()[0]

best_low_loc = all_temps.keys()[0]

best_high, best_low = get_highlow(all_temps[best_high_loc])

for loc in all_temps:
loc_temps = all_temps[loc]
loc_high, loc_low = get_highlow(loc_temps)

if loc_high > best_high:
best_high = loc_high
best_high_loc = loc

if loc_low < best_low:
best_low = loc_low
best_low_loc = 1loc

print(£’0f the {len(all_temps)} locations: {best_high_loc}
was the warmest with a high temperature of {best_high}
and {best_low_loc} was the coldest with a low
temperature of {best_low}’)

14

COSC 101 Final Exam May 2019

(This page is intentionally blank. Label any work with the corresponding problem number.)

15

COSC 101 Final Exam May 2019

(This page is intentionally blank. Label any work with the corresponding problem number.)

16

