
COSC 101 Homework 2: Spring 2024
The due date for this homework is Friday, February 9th, 11pm EDT

Introduction
This assignment is designed to give you practice with the following new topics:

• Procedural decomposition and composition
• Function mechanisms: passing arguments and return
• Module functions

Your assignment
Your task is to complete following steps:

1. Download the hw2.zip file from the course website and open it. You will see three python files,
hw2_garden.py, hw2_owls.py and hw2_tower.py in the unzipped folder. You are expected
to write your programs in these files.

2. Complete hw2_tower.py. This file is used in Part 1.
3. Complete hw2_garden.py. This file is used in Part 2.
4. Complete hw2_owls.py. This file is used in Part 3.
5. Review the grading criteria at the end of this assignment.
6. Submit your completed programs.

Notice that each starter .py file has a header with some information for you to fill in. Please do so. Your feedback
helps the instructors better understand your experiences doing the homeworks and where we can provide better
assistance.

Part 1
Tower

Your task is to design and implement a program that draws a particular text-art pattern (a tower), much like you
did in lab 2:

||
||

__{{}}__
__{::::::::}__
||||||||||||||
(_)()()()()(_)

(_)()()(_)
____][____

___][___
||
||

|%%%%%%|
|%%%%%%|
|%%%%%%|
|%%%%%%|
__{{}}__

__{::::::::}__
||||||||||||||

You must use separate functions for distinct features and to increase reusability while reducing repetition in your
code. Note that there are distinct segments to the figure as well as repeated elementswhich lend themselves naturally
to implementing as separate functions.

1

https://colgateuniversitycomputerscience.github.io/cosc101/hw/hw02/hw2.zip

• Notice that the feature below the spire at the top is identical to the base of the tower.
• Notice that the spire at the top is identical in size to the stem in the middle.
• Overall, there are just 4 distinct features (spire, topshell/base, bottomshell, middle).

Part 2
For this problem, we are providing youwith the code statements to calculate thematerials needed for an ornamental
garden according to the design below. In this garden design, the blue areas represent flowerbeds and the yellow
areas are filled with stone, mulch, or other fill material. The garden is a perfect square. The four outer flowerbeds
are congruent semicircles and the central flowerbed is a perfect circle.

The program prompts the user for the following information:
1. The side length (in feet) of the finished garden.
2. The recommended spacing (in feet) between plants.
3. The depth (in feet) of the flowerbeds.
4. The depth (in feet) of the filled areas.

Next it calculates and prints the following quantaties needed for the garden:
1. Number of plants for each type of flowerbed (semicircle and circle) and total number of plants for the garden.
2. Cubic yards of soil for each type of flowerbed (semicircle and circle) and total cubic yards of soil for the garden,

rounded to one decimal place. Note that there are 3 (linear) feet in 1 (linear) yard.
3. Total cubic yards of fill material for the garden, rounded to one decimal place. Again, note that there are 3 feet

in 1 yard.
Example output 1
Enter length of side of garden (feet): 10
Enter spacing between plants (feet): 0.5
Enter depth of garden soil (feet): 0.8333
Enter depth of fill (feet): 0.8333

Plants for each semicircle garden: 39
Plants for the circle garden: 78
Total plants for garden: 234
Soil for each semicircle garden: 0.3 cubic yards
Soil for the circle garden: 0.6 cubic yards
Total soil for the garden: 1.8 cubic yards
Total fill for the garden: 1.3 cubic yards

Example output 2:
Enter length of side of garden (feet): 13
Enter spacing between plants (feet): 0.25

2

Enter depth of garden soil (feet): 0.5
Enter depth of fill (feet): 0.25

Plants for each semicircle garden: 265
Plants for the circle garden: 530
Total plants for garden: 1590
Soil for each semicircle garden: 0.3 cubic yards
Soil for the circle garden: 0.6 cubic yards
Total soil for the garden: 1.8 cubic yards
Total fill for the garden: 0.6 cubic yards

The provided program is correct, you must test it with the provided examples to understand its behavior. Your
task is to come up with an optimal design for this program that splits the provided code statements across different
functions based on distinct features to increase reusability (and reduce repetition). Here are the rules that your
optimal-design program must follow:

• The behavior, functionality and output must be the same as the provided program (you shouldn’t need to
modify the provided code statements, check with your instructor before you change code statements).

• Your code must also define a main function that represents the entry point into your program (that is, the
first thing that gets executed) and calls the other functions. Therefore, you are allowed to put the user input
statements inside main (you are not required, but you may).

• The programmust prompt the user 4 times and **only* 4 times for the respective information needed by the pro-
gram. Your program must optimally transfer information between functions using the function mechanisms
of parameter passing and return we learned in class.

• All the provided code statements must be inside a function, the only code statements that should be outside
(in the global scope of the program) is the function call to main().

Part 3
Sitting Owls
For this problem, you need to write a program that draws two owls sitting on a branch at a distance that is randomly
picked between 5 and 20 (inclusive) spaces. One possible output could be:

.-"-. .-"-.
/ 4 4 \ / 4 4 \
_ v _/ _ v _/
// \\ // \\

(()) (())
=""===""=======""===""=

||| |||

To get you started, we have already provided you with a design for the program in hw2_owls.py. Fill in the
provided functions (note that when you are done implementing a function, you must remove pass) and call them
respectively to accomplish this task.

Important Note

Printing the backslash character \ is tricky because python uses the backslash to produce special characters. For
example, the string "\t" is a tab and "\n" is a newline. A single backslash character is represented by a string of
two backslash characters ("\\"). For example:
print("/\\/\\")

will print: /\/\

Grading
Your assignment will be graded on two criteria:

3

1. Correctness and Design [90%], broken down as follows:

Category Portion of grade
Part 1 30%
Part 2 30%
Part 3 30%

2. Program formatting and style [10%]: style and formatting become increasingly important the more complex
your program becomes. For these first programs, adhere to the following guidelines:

• Variable and function names should be meaningful.
• Programs should contain at least a few descriptive comments (one comment per function or block that

does a cohesive amount of work or implements a destinctive feature).
• Remove commented code or excessive blank lines.

Challenge
Youmay extend Part 3 to printmultiple (3+) different looking owls together on a branch. Some examples of different
looking owls are:

• Sleeping, no crest, tucked feet owl:
.---.

/ _ _ \
_ v _/
// \\

(())
=========

|||

• Owl looking sideways:
.-"-.

/ 6_6
_ (__\
// \\

(())
=""===""=

|||

4

	COSC 101 Homework 2: Spring 2024
	Introduction
	Your assignment
	Part 1
	Part 2
	Part 3
	Important Note

	Grading
	Challenge

