
Homework 5
The due date for this homework is Friday, March 29, 11pm EDT.

Part A: The Game of Nim
Nim is a mathematical game of strategy in which two players take turns removing (or “nimming”) objects
from a set of piles. Variants of Nim have been played since ancient times, with the game likely originating
in China.
At the 1940 New York World’s Fair Westinghouse displayed a machine, the Nimatron, that played Nim.
From May 11, 1940, to October 27, 1940, only a few people were able to beat the machine in that six-week
period; if they did, they were presented with a coin that said Nim Champ. It was also one of the first-ever
electronic computerized games. (Wikipedia)
Fig. 1: A woman playing against the Nimatron at the World’s Fair
For this week’s homework, we’re going to create a simplified variant of Nim where there is only one pile of
objects. The goals for this homework are to get you thinking about building more complex programs from
smaller functions.

Game Rules
The rules for our simple version of Nim are as follows:

1. The game Nim starts out with a random number of stones on the table between 7 and 15 (inclusive).
2. Each player takes turns picking up 1, 2 or 3 stones.
3. Whoever is forced to pick up the last stone loses. In other words, the player that leaves 1 stones left for

their opponent wins.
In this implementation, the (human) player will play against the computer. They should alternate turns,
starting with the computer.

Some requirements:

1. The player’s input should be validated (i.e., checked to see if it is a valid input). A valid input is a
number. It is usually 1, 2, or 3, unless that number would leave less than 1 stone behind. (A user can’t
say they will take 3 stones away from a pile with only 3 stones left).

2. The computer’s input should be randomly chosen between 1 and 3 (inclusive), but with the same
restrictions (the number chosen must leave at least 1 stone behind).

Writing docstrings for functions
Docstrings allow us to write documentation for our functions. Documentation is important because it gives
a high-level description of our code and its design. In hw5_basic.py, we have provided you with the
docstrings for the main and computer_turn functions. For this homework, you are required to write
docstrings for all the functions that you are going to implement. Note a few requirements when writing
docstrings:

• the docstring must be writen at the beginning of the function, inside a beginning and ending triple
double quotes (“““) and the entire body of the docstring must be indented accordingly.

• the first phrase in the docstring gives a succinct overview of the function. Refrain from including code
implementation details in the docstrings. For example, note that the docstring for computer_turn
does not specify how the random numbers are generated or the details of how the code ensures that
the randomly generated integer is less than the number of remaining stones.

• the docstringmust include the sectionParameters followed by the list of parameters, their type and
a description of what the parameter represents. If the function has no parameters then write None.

1



• similarly, the docstring must include the section Returns followed by the list of return values, their
type and a description of what the parameter represents. If the function has no return then write
None.

Run hw5_basic.py, which runs help(computer_turn). The help function is a built-in function
that takes in the name of a function and returns the documentation (docstring) for that function. In this
case, the output you should see in the terminal is the dosctring for the computer_turn function that
we have provided you with. Comment out this line and proceed to implementing the code for the utility
functions. When you are done writing the docstrings for all your functions, you may test that they are
correctly implemented by using the help function.

Helper (Utility) Functions
To build this game, we’ll bemaking use of a series of helper functions (described below). All these functions
must be implemented in hw5_basic.py. For each function, you must include a correctly formatted
docstring.
print_header(stones_in_pile: int, turn: int) -> None prints a header for each
turn. One line of the header indicates the turn number (i.e., Turn 1, Turn 2, etc.). Another line draws the
number of stones (O) in the pile. For example a pile of seven stones should be printed as: OOOOOOO

single_game() -> None executes an entire single game of Nim. This should call the other functions.
player_turn(stones_in_pile: int) -> int asks the user for the number of stones they
would like to remove and checks to see if that input is valid (see restrictions above). If the input is invalid,
it should keep asking until a valid input is provided. This function returns the valid user input.
computer_turn(stones_in_pile: int) -> int chooses a random number of stones to re-
move, given restrictions (see above).

Example Output

-- Turn 1 --
OOOOOOOOOOOOO

Computer removes 3

-- Turn 2 --
OOOOOOOOOO

How many stones would you like to remove? 4
Invalid input
How many stones would you like to remove? 3
Player removes 3

-- Turn 3 --
OOOOOOO

Computer removes 1

-- Turn 4 --
OOOOOO

How many stones would you like to remove? 3
Player removes 3

-- Turn 5 --

2



OOO

Computer removes 2

Game Over!
Computer wins

Part B: Testing Validation
Validating user input is an important part of this game. In a comment under the player_turn() func-
tion, give some examples of bad user input that you could use to test whether the validation works as ex-
pected. Describe why those would be good test cases.

Part C: Advanced Computer
As of now, our computer’s strategy is pretty basic (it’s completely random). To illustrate: If there were 4
stones remaining, a (smart) human player would obviously choose to take 3 so they would win, but our
computer might choose randomly choose 1 or 2 instead.
Write a new, improved version of computer_turn() called smart_computer_turn() that will
always win if there are 4 or fewer stones remaining in hw5_advanced.py. In hw5_advanced.py
also implement another version of single_game that calls smart_computer_turn() instead of
computer_turn(). For the other helper functions (print_header and player_turn), you can
either import or copy over the functions in the hw5_basic module.

Grading
Your assignment will be graded on the following criteria:

1. [60%] Part A: Be sure to run your code before submitting to check the accuracy of it.
2. [10%] Part B
3. [15%] Part C:
4. [15%] Program Design and Style:

• Variable names should be meaningful
• Programs should contain at least a few descriptive comments. Do NOT comment every line of

code with low level explanations of what each line does. Focus on high level ideas. For example,
write only ONE comment for each loop or conditional statement.

• The functions should be structured so that the logic is clear and easy to follow.
• All functions must have docstrings!

3


	Homework 5
	Part A: The Game of Nim
	Game Rules
	Some requirements:

	Writing docstrings for functions
	Helper (Utility) Functions
	Example Output

	Part B: Testing Validation
	Part C: Advanced Computer
	Grading


