
COSC 101 Homework 7: Fall 2023
The due date for this homework is Friday, 12 April 2024, 11:00pm.
The topics covered in this assignment include:

• Program design
• Dictionaries
• File I/O
• Exceptions
• Loops
• Functions
• Lists
• Strings

Instructions
Download hw7.zip and unzip the compressed file to reveal seven files included with this assignment:

• hw07_haiku.py: file in which all your code will be written
• hw07_syllables.csv: a CSV file containing words and the number of syllables in those words
• hw07_anthology.txt: an relatively small input text file containing haikus for testing
• hw07_novel.txt: a large input text file that can be used for testing
• hw07_novel_haikus_10500.txt: a text file containing all the haikus that can be found in

hw07_novel.txt

All of your work for this assignment will be completed in the file hw07_haiku.py.

Background: Haiku
Haiku is a form of Japanese poetry. One of the key characteristics of a haiku is its syllable pattern: a haiku
is composed of three short phrases consisting of 5, 7, and 5 syllables.
Your goal is to write a program that finds haikus that unexpectedly exist within a corpus of text.

Program Specification
The structure for creating a program that searches for haikus that happen to exist in a body of text hasmostly
been created for you. In hw07_haiku.py, the functions described below are started, including a few test
examples for each function.

Functions to write
1. normalize_word

This function accepts a string (a word) and returns a normalized version of the word in which any trailing
.,?!:; characters are removed, and the word is lower-cased. Hint: use the rstrip and lower string
methods.

2. load_input_text

This function accepts a string which is the name of a file from which to load a body of text within which
to search for haikus. The function should return a list of all words found in the file, where each word has
been normalized (use the normalize_word function created in step 1, above). The function should use

1

hw7.zip


try/except to check whether the filename given as the parameter actually exists; if the file doesn’t exist
the function should return an empty list.

3. load_syllables

This function accepts a string which is the name of a .csv (comma-separated) file containing information
about how many syllables different words have. Each line of the input file can be assumed to have a word
followed by a comma, followed by an integer number of syllables. You do not need to check whether the input file
exists for this function (unlike for the function written for step 2, above). This functionmust return a Python
dictionary where the key is a word and the value is the number of syllables for that word. You should not
“normalize” any of the words in the input file; just use them as-is.

4. words_to_syllables

This function accepts two parameters: a list of normalized words (i.e., the kind of list produced by
load_input_text), and a syllable dictionary (like one created by load_syllables). The function
should return a list of integers, where each integer is a number of syllables corresponding to the words
given to the function as the first parameter. Moreover, _any words that do not appear in the syllable
dictionary should be removed from the word list, in place. Put slightly differently, you should modify the
word list in place to remove any words that don’t appear in the dictionary. For example, if the list of words
is ['a', 'apple', 'notaword'] and the syllable dictionary is {'a': 1, 'apple':2}, the
function should return the list [1, 2] (there is one syllable in ‘a’ and 2 syllables in ‘apple’) and should
modify the word list in place so that it contains exactly ['a', 'apple']. To modify the list in place,
you’ll need to use either the remove or pop method (or the del operator).

5. check_haiku

This function accepts a list of integers representing syllables, i.e., a list produced bywords_to_syllables.
The function should checkwhether a haiku can be formed from the given syllables starting at the beginning
of the list. If a haiku can be formed, the function should return the index in the list after the end of the
haiku. If no haiku can be formed the function should return -1.
For example, if the list [1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 1, 3, 1] is given to the function, it
should return 10 (the index of the value 3). Recall that a Haiku is formed 3 verses containing 5 syllables, 7
syllables, and 5 syllables. The first three elements in the list can form the first verse, the next 4 elements in
the list can form the 2nd verse, and the next 4 elements can form the 3rd verse. The function should return
the index of the next element in the list. You can also think of the function as returning the number of values
in the list (starting at the beginning) that are needed to form a haiku.
The algorithm that you can use to determine whether a haiku can be formed is as follows:

1. Create an empty haiku
2. Add the next word of the text to the haiku
3. If the number of syllables in the haiku is less than 5, go to step 2
4. If the number of syllables in the haiku is greater than 5, go to step 1
5. Add the next word of the text to the haiku
6. If the number of syllables in the haiku is less than 12, go to step 5
7. If the number of syllables in the haiku is greater than 12, go to step 1
8. Add the next word of the text to the haiku
9. If the number of syllables in the haiku is less than 17, go to step 8
10. If the number of syllables in the haiku is greater than 17, go to step 1
11. Output the haiku, then go to step 1

Hint: use while loops and a nested structure (a new level of nesting for each verse) to implement this
algorithm.

2



6. find_haikus

This function accepts a list of integers representing syllables. It should return a nested list in which each
sublist contains exactly 2 items: the index in the list at which a haiku starts, and the stopping index of the
haiku, which should be the index just after the end of the haiku. Your function should check, for every index
in the list, whether a haiku can be formed from the syllables starting at that index; use the check_haiku
function and pass in a slice of the list starting at a given index. Note that one haiku found in a given body
of text can overlap another haiku found in the text.

7. print_haiku

This function accepts the full list of words in the input text, the list of syllables corresponding to the full list
of words, the starting index of a haiku found in the text, and the stopping index of the haiku (one index
beyond the end of the haiku). The function should print a nicely formatted haiku in which each verse is
separated by forward slashes (/). For example:
an old silent pond / a frog jumps into the pond / splash silence again

Hints: use list slicing to extract the words in the haiku as well as the exact syllables in the haiku. Use an
accumulator pattern ormodify the list of words in the haiku in place to insert the forward slash in the correct
position in the haiku word list. Use the string join method to join all the words (including the slashes) of
the haiku together.

8. haiku_finder

There is nothing to do for this step: this function has already been written for you. It uses the functions
written in previous parts to accomplish this task. This function accepts two file names (strings); the syllable
CSV file name, and the name of the input text. It loads the syllable data, loads and normalizes the input text,
creates a list of syllables corresponding to the input text, then finds and prints all the haikus found in the
text.
Uncomment each line of code as you implement the different required methods it uses.

9. main

There is nothing to do for this step: a main function has already been written for you. Uncomment the two
line of code provided in main when you are done implementing the rest of the program and are ready to
test the program.

Testing
Incremental testing for each function
As you implement the required functions make sure you test them to tease out any potential bugs. Skipping
this step may make debugging your program exponentially harder when you only test the entire program.
We have provided you with some tests in the docstring of each function. Make sure to first run the
functions with these values inside main. You must run each function with at least one test case that you
come up with. Once you are done testing a function, comment out the tests you wrote for it in main. DO
NOT delete the tests as they count towards 10% of your grade.

Program Testing (all together)
When you are done implementing all the required functions, test your program to check that it’s working
properly. We provide here a few additional notes on the input files and text processing.

3



The file hw07_syllables.csv contains a list of English words and the number of syllables in each
word. The file contains one word per line; the word and syllable count are separated by a comma.
We have provided three sample input files: * hw07_anthology.txt contains two haikus by famous
Japanese poets, but because your program searches for overlappinghaikus you should find 6 haikus in this file.
*hw07_novel.txt is the complete text of Flatland by EdwinA. Abbott, which contains 10500 unexpected
haikus * hw07_novel_haikus_10500.txt is the complete set of haikus found in the above text file,
for reference.

Example
A sample run of the program is shown below. Make sure your program exactly matches this format.
Program output:
File in which to find haikus? hw07_anthology.txt
Found 6 haikus.
an old silent pond / a frog jumps into the pond / splash silence again
old silent pond a / frog jumps into the pond splash / silence again a
a frog jumps into / the pond splash silence again / a summer river
into the pond splash / silence again a summer / river being crossed
splash silence again / a summer river being / crossed how pleasing with
a summer river / being crossed how pleasing with / sandals in my hands

Submission
Submit your completed assignment onMoodle under your course section’sHomework 7. You shouldupload
the following file:

• hw07_haiku.py

Remember to complete the questions at the top of the provided files and that the files you submit need to
have these exact filenames.

Grading
Your assignment will be graded on two criteria:

1. Correctness: this document contains details for how you must complete each function, including ex-
amples. Be sure that you run your functions once for each example andmake sure they work correctly
according to your tests for each one. [90%]
The correctness part of your grade is broken down as follows:

Category Portion of grade
normalize_word 10%
load_input_text 10%
load_syllables 10%
words_to_syllables 15%
check_haiku 15%
find_haikus 10%
print_haiku 10%

Testing [10%] - refer to the section on Testing.

4

http://moodle.colgate.edu


2. Program design and style [10%]: style and program design become increasingly important the more
complex your program becomes. For these programs, adhere to the following guidelines:

• Variable names should be meaningful
• Programs should contain at least a few descriptive comments. Do not comment every line of code

with low level explanations of what each line does. Focus on high level ideas.

5


	COSC 101 Homework 7: Fall 2023
	Instructions
	Background: Haiku
	Program Specification
	Functions to write
	1. normalize_word
	2. load_input_text
	3. load_syllables
	4. words_to_syllables
	5. check_haiku
	6. find_haikus
	7. print_haiku
	8. haiku_finder
	9. main


	Testing
	Incremental testing for each function
	Program Testing (all together)
	Example

	Submission
	Grading

