
COSC 202, Exam 1 Practice

The solutions are not intended to be detailed. On the exam you need to provide
answers in sufficient detail to get full credit. If you are uncertain what counts
as sufficient detail for any particular question, please ask your instructor.

1. What is the runtime of the following algorithm?

c = 0
for i = 1 to n do

j = 1
while j < n do

c = c+ 1
j = j × 2

end while
end for

Solution:
n∑

i=1

log i ≈ n× log n

2. Consider the following algorithm

count = 0
for i = 1 to n do

for j = 1 to i do
count = count + 1

end for
end for
return count

(a) What does the algorithm do?

Solution: Computes summation. a =
∑N

k=1 k

(b) What is the run time of the algorithm?

Solution: O(n2).
∑n

i=1

∑i
j=1 1 =

∑n
i=1 i =

n×(n+1)
2

= c× n2

1



COSC 202 Exam 1 February 2024

3. Given a collection of n positive unique integers and an integer z, we would like to know
if there is a pair of numbers x and y such that x + y = z. Given some integer z, the
algorithm returns a Boolean of True if a pair of number that satisfies this exists in the
collection and False otherwise. No need to report the pair of numbers.

(a) (4 points) Come up with an algorithm that solves this task for LinkedLists with a
time complexity of O(n2)

Solution:

static boolean hasPair2(List <Integer > list , int t) {

int countFirst = 0;

for (int first : list) {

int countSecond = 0;

for (int second : list) {

if (countFirst != countSecond

&& first + second == t)

return true;

countSecond ++;

}

countFirst ++;

}

return false;

}

Runtime is O(n2)

(b) (4 points) Come up with an algorithm that solves this task with a time complexity
of O(n).

Hint: think about what is the best way to store the collection for this algorithm.

Solution:

for k ∈ H.keySet() do
if H.containsKey(z − k) And z − k ̸= k then

return True
end if

end for
return False

Runtime is O(n)

4. Consider a modified merge sort algorithm, where we divide the array into three sub-
arrays instead of two sub-arrays. Within this modified merge sort, named MergeSort3,
we call a merge algorithm, Merge(B,C,D), that merges three sorted arrays. The Merge-
Sort3 algorithm is as follows:

MergeSort3(A)
if Len(A) = 1 then

2



COSC 202 Exam 1 February 2024

return A
else if Len(A) = 2 then

Merge(A[1],A[2],∅)
else

k= ⌊ Len(A)/3 ⌋
s=⌊ 2×Len(A)/3 ⌋
B ← MergeSort3(A[1. . . k])
C ← MergeSort3(A[k+1. . . s])
D ← MergeSort3(A[s+1...n])
return Merge(B,C,D)

end if

And the Merge algorithm combines three sorted inputs into one single sorted array:

Merge(B,C,D) return A ▷ A is sorted

We have a stack that keeps track of recursive calls to the MergeSort3 function. For the
input A of size 27, identify the first five calls to MergeSort3 stored in the stack. Describe
the function calls in terms of their inputs.
Hint. The first call would be MergeSort3(A[1. . . 27]).

Solution:

1st call: MergeSort3(A[1. . . 27])
2nd call: MergeSort3(A[1. . . 9])
3rd call: MergeSort3(A[1. . . 3])
4th call: MergeSort3(A[1,1])
5th call: MergeSort3(A[2,2])

5. Give a θ(n)-time non-recursive procedure that reverses a singly linked list of n elements.
The procedure should use no more than constant storage beyond that needed for the list
itself.

Solution: Initialize three pointers prev as NULL, current as head, and next as
NULL.

while current != NULL do
next = current.next
current.next = prev
prev = current
current = next

end while

3



COSC 202 Exam 1 February 2024

See link for visualization:
https://www.geeksforgeeks.org/reverse-a-linked-list/

6. For each of the following pairs of functions determine which grows asymptotically faster

(a) f(n) = log2(n
3) and g(n) = (log2 n)

3

Solution: f(n) = O(g(n))

(b) f(n) = n log2 n and g(n) = n+ log2 n

Solution: f(n) = Ω(g(n))

(c) f(n) = 3n+2 and g(n) = 32n

Solution: f(n) = O(g(n))

(d) f(n) = 3n and g(n) = n2n

Solution: f(n) = Ω(g(n))

4


